Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene.

نویسندگان

  • Cecilia B Agüero
  • Sandra L Uratsu
  • Carl Greve
  • Ann L T Powell
  • John M Labavitch
  • Carole P Meredith
  • Abhaya M Dandekar
چکیده

SUMMARY Polygalacturonase-inhibiting proteins (PGIPs) are plant cell-wall proteins that specifically inhibit fungal endo-polygalacturonases (PGs) that contribute to the aggressive decomposition of susceptible plant tissues. The inhibition of fungal PGs by PGIPs suggests that PGIPs have a role in plant tolerance to fungal infections and this has been observed in transgenic plants expressing PGIPs. Xylella fastidiosa, the causal agent of Pierce's disease (PD) in grapevines, has genes that encode cell-wall-degrading enzymes, including a putative PG. Therefore, we hypothesized that PGIP expression could confer tolerance against this bacterium as well as against the fungal pathogen Botrytis cinerea. To test this hypothesis, Vitis vinifera cvs. 'Thompson Seedless' and 'Chardonnay' were transformed to express pear fruit PGIP-encoding gene (pPGIP) under the control of the CaMV 35S promoter. Substantial pear PGIP (pPGIP) activity was found in crude extracts from leaves and in xylem exudate of transgenic lines obtained from independent transformation events, but not in untransformed controls. pPGIP activity was detected in xylem exudate of untransformed scions grafted on to transgenic rootstocks expressing pPGIP. Leaves of transgenic plants infected with B. cinerea had reduced rates of lesion expansion. The development of PD was delayed in some transgenic lines with increased pPGIP activity. PD-tolerant transgenic lines had reduced leaf scorching, lower Xylella titres and better re-growth after pruning than the untransformed controls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIRECTING POTENTIAL ANTI-XYLELLA GENE PRODUCTSTO THE XYLEM OF TRANSGENIC GRAPEVINES Project Leaders:

One of our target genes is a pear pgip cloned in the Labavitch lab (Stotz et al. 1993). PGIPs are proteins containing a leucinerich repeat domain that are targeted to the plant cell wall and that specifically inhibit fungal polygalacturonases (PGs). By inhibiting PGs, PGIPs directly interfere with host cell wall degradation and may thus prevent degradation of pectic oligomeric elicitors that ar...

متن کامل

Assessment of salt tolerance in transgenic tobacco (Nicotiana tobacum L.) plants expressing the AUX gene

Transformation of plants using Agrabacterium rhizogenes may affect secondary metabolite production as well as morphological changes. In this study, T-DNA from Ri plasmid in A. rhizogenes carrying pRi15834-PRT35S-GUS was introduced into tobacco leaf segments to initiate development of transformed hairy roots. Plant regeneration from transgenic roots used MS medium, and plants regenerated fro...

متن کامل

Transgenic expression of pear PGIP in tomato limits fungal colonization.

Transgenic tomato plants expressing the pear fruit polygalacturonase inhibitor protein (pPGIP) were used to demonstrate that this inhibitor of fungal pathogen endopolygalacturonases (endo-PGs) influences disease development. Transgenic expression of pPGIP resulted in abundant accumulation of the heterologous protein in all tissues and did not alter the expression of an endogenous tomato fruit P...

متن کامل

Expression of related proteins and aquaporin genes in grape (Vitis vinifera L.) under salinity sress

Due to worldwide increasing of salinity, the identification of genes conferring tolerance to plants is important. The aim of this study was to investigate salinity effects on the expression of three genes-related to proteins and aquaporin in grape (Vitis vinifera L.). Based on screening study on 18 grape genotypes, H6 and Gharashani that showed lower decrease in water potential, leaf area, leaf...

متن کامل

Responses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress

Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant pathology

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2005